skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dema, Catherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Proton therapy has potential for high precision dose delivery, provided that high accuracy is achieved in imaging. Currently, X-ray based techniques are preferred for imaging prior to proton therapy, and the stopping power conversion tables cause irreducible uncertainty. The proposed proton imaging methods aim to reduce this source of error, as well as lessen the radiation exposure of the patient. CARNA is a homogeneous compact calorimeter that utilizes a novel high density scintillating glass as an active medium. The compact design and unique geometry of the calorimeter eliminate the need for a tracker system and allow it to be directly attached to a gantry. Thus, giving CARNA potential to be used for insitu imaging during the hadron therapy, possibly to detect the prompt gammas. The novel glass development and the traditional image reconstruction studies performed with CARNA have been reported before. However, to improve the image reconstruction, a machine learning implementation with CARNA is reported. A proof-of-concept Artificial Neural Network, is shown to efficiently predict the density and the shape of the tumors. 
    more » « less